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Abstract

Coonsider the problem of detecting and localizing a front object moving in an “cssentially
stationary” backg round, using a sequence of two-dimensional low- SNR images of the scenc.
A natural approa ch consists of “dig itizing” cachsnapshot into a discrete set of observations,
sufliciently (perhaps not exactly) matched to the object in question. then fracking the objeet
using an appropriate stochastic filter. The tracking would be expected to make up for the
low signal-tc-noise ratio, thus allowing one to “colierentl y™ process successive images in order
to beat down the noise and localize the object. Thus, “tracking” here does not refer to the
ususal notion of detecting then tracking: rather, we track in order 1o detect. The problem
then becomes one of choosing the appropriate inage representation as well as the optimal (and
necessarily non-linear) filter. We propose exact and appioximat e solutions using wavelets and
the Zakai equation. The smoothness of the wavelets use d is requiredinthe derivation of the
evolution equation for the conditional density giving thefilter, and their orthogonality makes
it possible to carry out actual computations of thelto -and change-of-gauge- terms in the
algorithm effectively.
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1 Introduction

Consider the problem of determining the posi-
tion of an object moving on a line, in a plane,
or in 3-space, using a sequence of snapshots
of the “mostly stationary’’region of space in
which it evolves. Specificaly, we would like
to teach a computer to extract from the se-
quence of images the coordinates of the ob-
Jject of interest, in the case where the signal-
to-noise ratio is very low. A naturalfirst at-
tempt to solve this problem consists of pro-
cessing one image at a time, and looking for
the pattern(s) we expect the object to produce
on each frame individually. One would thus
build templates of these patterns and move
the templates all over the individual image,
looking for the best “match”. his first at-
tempt is indeed firmly justified mathernati-
cally and would give a classica matched fil-
ter agorithm. Matched-filter processing is by
now well-understood, and sophisticated con-
siderations involving noise models, noise es-
timates, and various error probabilities alow
the design of suitable matched-filter detectors.
Thus, cases where good localization is possible
on a single image can be considered solved,
and shall not concern us further, except inas-
much as a tracking algorithm might make the
detection-and-localization process on later im-
ages substantially more efficient. Rather, let
us look atthe problem where localization of
the object on a single image is impossible or
atleast hard and fraught with ambiguity. For
example, theobject may not be “visible™ a
anon any image. Of course, if the object were
moving in a straight line, one could add the
successive images properly lined up along var-
ious possible bearings, thus hoping that the
“signals’ on the various images would add up
“coherently” while al the rest, the “noise”,
would do so “incoherently”: this would be
the equivalent of the well-known delay-and-
sum beamforming idea for plane waves in var-

ious scttings. It would allow one to increase
the “sigh al-to-noise” ratio sufliciently, given
enough images (the number Of images would
correspond, in this analogy, to the number
of array elements), to bringthe “spike” well
above the noise threshold and thus make the
required detection. Unfortunately, the time
scal es involved may make it highly uniikely
that the moving object will have kept to a
straight line track throughout the observation
process; this modified matched-filter approach
would thus fail in thepresence of a typically
‘(maneuvering” object. in other cases, many
parts of an image may be likely to provide
equally good matches with the template, thus
creating difficult ambiguity problems.

This filtering problem bears a definite re-
semblanc e to the typical problem solved by the
Kalman- Bucy filter. Indeed, in both cases we
arc given asct of observations at a sequence of
times (the sequence of images). Then, know-
ing how these observations arc affected by the
coordinates of ourobject (i.e. knowing the
pattern that the presence of the object cre-
ates on an individua image), and knowing the
laws that must be obeyed by the motion of
the objeet (in our case,to keep things sim-
ple, some continuity requirements and bounds
on the velocity), we want to design an algo-
rithm that will estiinate as best can be the
position Of the object a every point in time.
Tile algorithm can, and indeed should, make
use of dl past information in order to refine
at cach time step its best estimate for the
new position of the object. Thus, this “track-
ing” wouldbe expected to make up for thein-
evitable shortcomings of any attempted noise-
reduction/background-suppression /signal-
enhancement procedure applied to each indi-
vidualitnage. One would then he able to find
andtrack the object even if it were impossible
to isolate on any single frame. The Kalman
filler is just such an algorithm, except that it
applies only to thelinear case, where the ef-




feet of the object on the observations is a lincar
function of the coordinates of theobject. In
the case of images, that is of course never the
case: theeflectis by definition local, therefore
the mathematical functions in question turn
outto beatthe very least bounded, and in
any case far from linear.

Fortunately, a generaization of sorts of the
Kalman filter to the non-linear case dots al-
ready exist,thankstothe work of T. Duncan,
R. Mortensen, and M. Zakai. They derived the
cquations that must be solved in order to find
the “optimal” filter (in the same least-squares
sense as the Kalman case) which, when fed a
set, of not,-necessarily-linear observations, will
produce thebest estimate of the required coor-
dinates. Therest of this paper describes how
their remarkableresults, which until now have
been mostly of a theoretical interest, can help
solve our problem practically,

Themost interesting application of our ap-
proach is tothe case where the SNR is s0 low
that the object is not dctcc.table on any sin-
gleimage. The idea of using stochastic filter-
ing techniques to track objects on sequences of
images is not, new (see eg. [HN],[LY]). The
stochastic approaches proposed to date typi-
cally use extended Kalman filters to estimate
the motion parameters and track the object.
Our purpose is different. Indeed, we do not
assume that the object has been detected or
localized, and we seek a way to combine a suf-
ficient number of successive images (the exact
number being in al likelihood inversely pro-
portional to the signal-to-noise ratio) in order
to detect the object. The extended Kalman fil-
tering approach is unfortunately not appropri-
ate for this problem because the dependence of
the data (the images) on the variables to be es-
timated (the coordinates of the object) is not
only non-linear, it is a non-analytic function
(in fact, it is highly localized): using a Taylor
scries approximation, as the extended Kalman
filtering approach requires, would therefore be
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totally inappropriate. Once the object is de-
tected and roughly localized, however, track-
ing methods in the conventional sense (such
as the ones derived from the approaches de-
scribed i1t [IIN] and [1.Y] for example) would
then be quite applicable, and substantially
more con iput ationally eflicient,

2 Mathematical formula-
tion of the problem

To make the problem mathematically precise,
let us assume that each image provides us
concretely with a fuuction on a compact re-
gion of RN (with N = 1,2, or 3), represent-
ing the intensity of the image at every point
innthe rcgion of interest. The problem will
then bet we-fold: finding a good way to rep-
resent this sequence of functions, then finding
a good way of extracting the position of the
particle in question from the chronological se-
qguence of pictures. The precise meaning of
“good” in the image representation problem
obviously depends on the method one chooses
to track the particle. A natural choice is to
look for a (necessarily nonlinear) filter. View-
ing the position z, of the object at time ¢ as
astochastic time-varying vector, one will then
haveto estimate quantities which are functions
of the stochastic process {#; } (for example its
mean, its variance, etc.), on the basis of in-
formation obtained from related “directly ob-
servable’ processes, namely the information in
the sequence of images of thescene. Thus,
one needs to identify these observation pro-
cesses precisaly, and to make explicit, their de-
pendence on the object-position process z;.
To that end, let us assume for simplicity,
that the images are oue-dimensional. One rea-
sonable choice for the observation processes is
totake Of = the intensity of the image a time
t over the subinterval [76, (' 41)8], where § is




apositive real number chosen and fixed a pri-
ori, and r’ runs over al integers. Symbolically,

(t41)6

Of = s (2)dx, where the function s,
roprosonlt.és the intensity of t he image at time {.
We would then end up with observation pro-
cesses O each representing the intensity of
the image over the pixel of widthé centered
around (r' 41 /2)é. Thisreasonable choice has
onc important drawback: in the language of
[SM], it presupposes hat the images contain
no detail structure finer than an a priori cho-
sen scale, inthe notation here 6. To get around
this problem, let us rewrite the formula for
each observation process as

(H])é

O = .1)(11-/ ¢(6™  2—1)s,(2)dx

Jis

(1)
where ¢ is the square window function ¢(x) =
1if O <2 <1, and O otherwise. This new
notation suggests that a natural way to replace
the Oi’s by processes which do not a priori
eliminate finer details in the images (sce [SM])
isto choose as our new processes

Ztl']:/ Py (2)se(2)de

where V0.0 is the Haar wavelet ¥o,0(2) == 1 if
0<x < 1/2, --1 if 1/2< 2 <1, and 0 oth-
erwise, and ¥, ,(z) :2%(/,0’0(211-, -1). Here,
1 and ; range over allthe integers. At this
stage, there is no need to restrict ourselves
to the Il aar wavelet. So let us assume that
t he observat ion processes are chosen accord-
ingto formula (2) but with ¥, any wavelet for
which the family {3, ,}isan orthonormal basis
for the space of al square-integrable functions
(sce, e.g., ID1], IN2), [SM)).

How do these observation processes depend
on the object-position process x¢? Assume, for
simplicity, that theobject is “symmetric” in
such a way that the intensity pattern it makes
when it is placed, in any orientation, at the
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origin is aways given by the function »(z). In
the |-dimensional case, this means thatr is
an even function (in t he 2-dimensional case,
this would man that » is independent of polar
angle). One can assume that the image at time
{ is then given by

s1(2) = r(x — o) + (b(2) — b(2)).

Theterm in parentheses represents the back-
ground intensity &, a time {, from which a
template background intensity b has been sub-
tracted. The original assumption that the
background is ‘(mostly stationary” was meant
to imply that there is a given background b
from which b, cannot differ much. Let us now
make this more precise by requiring that the
term in parentheses be the white noise process
Ni(z),and that Ny(z), N, (2 )be independent
for al a different from J?I,tcliffcrent from t'.
‘I"hen, under these assumptions, the observa-
tions are given by

Le} [e'e]
Zt'":/ Yy, (@)r(2--2¢)daH 3 ¥y, (2)Ny(z)da
£ 00 —o0

=fi,(2)+ N7,

where the functions f, , are given by

fia(y) :/_ "1/),,](.1:)1-(ar - y)d=,

while N;’ is similarly given by
N7 = / Yoy (@) Ne(2)da

The assu mpt ion that {v, ]} is an orthonormal
basis implies that each N;7 is agam a white

noise process and that N,”, N' g are indepen-
dent if (2.5)# (2 3). In Iess precise terms, the
orthonorimal basis allowed us to represent the
image sequence as a discrete set of observation
processes in which the noise is no more corre-
lated than it was in the original images. In the




more precise language of stochastic processes,
cach N;”is written as N;7dt=c"?dby’, where
by’ is standard Brownian motion, and where
we Will assume for simplicity that all the noise
variances o7 are independent of (z, ), writing
ot — o (this is equivalent to assuming that
the distribution of the error incurred in sub-
{racting b(2) from é,(2) is independent of the
specific location ).

Our problem is now to look for a good esti-
mate of the coordinates of theobject 24, given
the observations Z;7 as in equation (2). Defin-

1

ing 437 to bey;” = / Zidr,this is a typical

.
problemin non—linc;;) filtering: given a model
for the dynamics (evolution in time) of 24, for
any timet, and given the past samples of the
observation processes ¥;”,T <1, which de-
pendong,, calculate the conditional expec-
tation F{x:|y-, O <1<} providing the
best estimate of «, given al the observations
Rewriting equation (2) interms of the{¥”} ‘s,
one finds that the dependence of the ¥;” on ¢
is given by

dy}? = fi,(20)dt + odb}? (3)
‘1'bus, regardless of the motion model for 4,
our problem is indeed nonlinear because the
functions f, , are far from linear (indeed, they
are quite localized in space).

One of themajor results of non-linear fil-
tering in thelast twenty years is that such a
non-linear estimation problem is in fact solv-
able, provided a certain second order partia
differential equation can be solved. The latter
is the Zakai eauation (sec for example [BC],
(1. ], [MZ], [RB], [kkM], [TD)). Zakai's remark-
able result has unfortunately not been widely
known and used because Zakai’s equation is, in
typica cases, quite difficult to solve, exactly or
numerically.

To preserve the flow of our exposition, we
summarize the results of R.Mortensen, T.

Duncan and Zakai which we will nced in Ap-
pendix A, and continue here with the main
topic. We just observe now that in order to use
these results to deal with our problem, we il
need to write down the a priori constraints on
the motion of the object (i.e, the analogue in
our case of equation (A 1) of the appendix). In
the next section, we will look at two such mo-
tion modcls, and try to solve the Zakai equa-
tion in those two cases. Notice aso that the
components of our observation functions must
be assumed differentiable in order for the for-
malism of stochastic filtering to apply. The
observation functions are the

fee)
fig(z) = 2% 1/)0'0(?’:?’ S )r(a - aa)dm‘ ,
4
and r is not necessarily continuous let alone
differentiable (indeed, the object will typically
have a well-defined edge, and r will then drop
to O abruptly at that edge), We must therefore
require thatvoo be differentiable. The Haar
wavelet that we considered initialy is not even
continuous, but there are many other wavelets
generating orthonormal bases which are (see
(11)1], [12)2)).

3 The nonlinear filter

At this stage, we have formulated the problem
in such a way that our observation processes
do satisfy the assumptions made in the hy-
potheses leading to the Zakai equation. We
still need to identify the state variables that
must be estimated and the evolution eguation
governing their dynamics (i.e., the analogue of
equation (A 1) for our problem). Cdling X,
our vect or of state variables, heuristicaly it
seems natural to build into our model for X,
the confinuity of the motion of the object, as
well as any bounds onitsvelocily that seem
physically reasonable. A natural choice would
be to take X.=-x, itself, and, lacking any a




priori knowledge about the motion of our ob-
ject, to assume that the motion is Brownian.
Mathematically, we would then be assuming
that 2y = nff,,w]xcroa would incorporate all
our a priori assumptions about the tendency
of our object to move away from xp. While
the simphicity of this assumption is appealing’,
it has two major drawbacks. It is not likely to
reflect realistically the actua motion of many
objects we would typically be interested in lo-
eating; and tracking. Perhaps moreimportant,
it will not allow us to extend these considera-
tions to objects which do not possess the sym-
metry we have assumed earlier. Indeed, the
two motion models we will consider in greater
detail do allow the method to apply to asym-
metricobjeets. S0, instead of this natural but
too simple motion model, let us consider, as a
first aternative, its first integral

Still assuming for simplicity that the motion
istaking place on the real line (i.e., in our orig-
inal notation, with N = 1), let us assume that
the motion of our object is described by a 2-
dimensional process Xy, written X;= (&, v),
with 2 representing the position of the object,
v its velocity, For the dynamics, we assume
that

dr,
= =y
dt A
v, = o By,

where 13, is Brownian motion. This is the ana-
logue of equation (A 1) which describes this
first motion r-node]. It says that the velocity
of our object evolves according to a Brownian
motion starting from an initial velocity vo. It
is therefore natural to call this model theinte-
gral of Brownian motion. The corresponding
Zakai eguation can now be obtained by identi-
fying the various termsin the general version
given in the appendix. One finds that, in this

case,
2
0p _ o . .
o -Z*A”ph v Vo
(20’ > fzz_;( )_‘ T >JU 'U Vf,](il)>f),
©)
where A, denotes the lLaplacian in v (explic-
. . . H2
itly, in the one-dimensional case, A, = ﬁ),

and V, denotes the gradient in 2 (again, inthe

one-dimensional case, VT ~,)—)

While the general form of the Zakai equa-
tion looked quite complicated, its specializa-
tion in 1 his case gives asimpler equation.
The rigl,t-hand-side of (5) consists of three
terms: a “diffusion” in vonly, a “drift” in z,
and a multiplicationterm. Still, solving such
an equation exactly is quite difficult. How-
ever we can obtain an approximate solution
if wc “group”theterms on the right judi-
ciously. ]ndecd let us call[« the function

B0 5 ZLf,?J @+ - Ly,](t)v Vf.,@)

appearing asthe multlpl|cat|on term, and
rewrite the operators inthe right-hand-side of
(5) as

Dy = 5y Ve = E
so that the Zakaicquat ion itself can now be
written as

Op

ot ©)

To proceed, let us make an analogy with lin-
ear systems of first order ordinary differential
equations. To find a vector-valued function of
time Y (1) solving a systemY = (4, + A2)Y,
where A |, A2 arc constant matrices, one sim-
ply computes Y (1) = exp ({(Ay + A)) - Y(O),
where Y'(0) is a prespecified initial condi-
tion. Moreover, if thesum Al + A,on

= ])lfl ‘+ Dzﬁ



the ri.gilt-hanct-side is diflicult to exponentiate,
one can use the formula exp (¢1(A; + 42)) ==
limy, oo ((\xp(f—l/h)oxp(f;/lg))”f which is
quite helpful if the exponential of each sum-
mand is known. In fact, one does not need
to let n tend all the way to oo in this last
formula if one is only interested in an approxi-
mate answer. Indeed,withn =1, one can ill
say thatif ¢ is an arbitrary point in time, and
if >'(f) is known, then for ésufficiently small
the solution ati+4§é can be approximated by
Y (t+4 6) m exp (6A41) exp (6 A2)Y (). Moreover,
It turns out that the ~ sign in this last formula
can in fact be replaced by an exact equality if
the matrices Ay and A, commute.

in our case,these considerations have a
natural generalization. If we choose a time-
imcrement é that is small enough that the func-
tion I({,z,v) can be considered almost inde-
pendent of time on the interval [t,¢ 4 6], one
canthen write down an approximate solution
to (6) in the form

Pt &2, v) = exp (8D1)-exp (6D2)-p(t, 2, v),

(7)
where the operators on the right are defined
by

e (2‘7 &) !
——-dv

V oro' 26 E;)

(exp (8122)-p) (2, v)=p(x—bv,v)e” fo[ redr
(9)

(exp (6D1) - p)(2,v)+ /;)(;r v')—

for p a function of («,v).

Ilquation (7) gives a recursive procedure for
finding an approximate solution to the Za-
kai equation in this case, i.e. when the mo-
tion model is the integral of Brownian motion:
starting with the initia density Ao, “advance
it" in time by small time-increments accord-
ing to (7). Heuristically, at each iteration, the
first step is to account for the randommess in
the motion that could nave affected the posi-
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tion of the object between time ¢ and ¢ + §;
the second step is to incorporate the informa-
tion containedin the ohservations f; ,. That
is what equations (8) and (9) accomplish. A
more general version Of this idea was originally
proposed and extensively developed in [HW].
In our case, as we will see in the next sec-
tion, this simple approximation will actually
give the exact solutioninthesimplest case.
Forthe second motionmodel, we adapt an
idea from V. Benes's considerations [VB].1.ct
us refer to it as the Poisson model. We will
stillneed our two variables x, and v, sub-

ject to the assumptions A =, and that the
velocity process v, takeé independent values,
with density g, which are constant between
jumps of a Poisson process of rate A. This
means that our object moves in straight line
segments, changing its course at a seguence
of times {t1,12,13, . ..} such that the quanti-
tiesty, 1o~ 11,13 — /2, ... are distributed ac-
cording to aPoisson distribution of mean1/A,
and such that the new velocities at each course
change are distributed according to a prespec-
ified density function g. The corresponding
Zakai equation is

ap

at

,IJ,J 2= Lu”mv Vfos(2)H A)
(10)

To solve this equation, let us write p
S >0 . and require that each gy, satisfy

v Vep+ /\g(v)/[)(i,x, vl)dv’—

20°

‘;) I:h
(H

()(, JJM("

~v-Vpfh 4 )\g(v)/ pa(t, 2, vl)dvl—

zjy;,J(t)v.Vf,‘](ar)-h\) M
1)

(11)
where £-1 is assumed to be identically zero.
Indeed, the requirement that p satisfy the Za-

kaiequation (10) is exactly equivalent to the




At 2,0)= Ao, 2 —E—1o)v, v)e
2g0) [ 1 (5.2 = (- o,0)doe

requirement that cach py, satisty equation ('11).
The introduction of the index n makes it pos-
sible to solve this system of inhomogencous
first order equations by induction, using the
method of characteristics. in fact, if we set

Ft, )= 71(,2'[2 foy @) 29 Qv -V, @H AL
1,7

the equation for fo is solved by
t il
po(t, 2,v)=p(0, 2o, v)c—fo I(s,a—(t—s)v)ds

where the initial density p(0,#,v)is assuined
known. Practically, a slightly more genera
version of this equation, relating g at timet
to pat any previous instant in time, would be
useful, This can be obtained by writing the
solution for p,,n> O as

f“o F(s,a—(t—s)v)ds 4

- f"f‘(7,r—(t—7)v)d7 ds

(12"

keeping in mindthat p_; is zero. That these
formulas for p,, do give solutions to the pre-
scribed eguations for p, can be verified di-
rectly. One can now reconstitute j by adding
al these equations together. Remarkably, the
equat ion one then gets is exactly (12) without
theindexn! The left-hand-sides add upto p
a timet, and the right-hand-sides involve the
values of pat earlier times.

in this case, i.e. when the motion model is
the Poisson model, one can thus again com-
put ¢ pby “recursion” on {, this timeezactly.
As before, at each new timet, the iteration
proceeds in two steps: first the motionran-
domness is accounted for (witness the terms
“bto, 2—({=t)v,1)” and “fs, 2—(t—8)v',v)" in
(1 2), then the information in the new obser-
vations is incorporated (the exponential terms
in (12)). Theform of the solution in this case
highlights quite clearly the tremendous sim-
plification one enjoys thanks to the orthogo-

nality of the wavelet basis. This property is

not Crucia 1o the derivation 6t the equation
governing the corresponding conditional den-
sity. However, if it is not made, one would
end up with a huge number of “crosst terms”
in the exponents appcaring in the formula
for p, ( and thus for p)above, as well as in
the expression relating p and p. These cross-
terms would be due to the correlation between
the noise in the different observations. They
would practically manifest themselves as dou -
ble sum (over (2,7),(x 7)) instead of the sin-
gle sums we now end up with, and would then
make any implementation of the formulas pro-
hibitively time consuming. The orthogonal-
ity assuinption has thus alowed us to replace
impossibly “dense” matrix multiplications of
the form 37 ., ‘})]A?”ij’f" (where A would
have represented essentially the noise correla-
tion mat rix) by manageable “diagonal” sums
of the form™y,  ,suchaswe now have,

Before going on to the examples, it is im-
portant to notice that we only needed the or-
t hogonality of the {¢), ,} and not their com-
pleteness. The results we nave obtained would
thus remain valid if only afinite subset of them
is used, which is indeed what must happen in
practice, While there is in general no reason
to select a priori such a finite subset, there is
nothing in the derivation of the formulas pre-
venting us from doing so.Indeed, {¢,} could
be any orthonormal set of continuously differ-
entiable square-integrable functions.

1,07

Finally, let us reconsider one other sim-
plifying assumption which can be removed.
That is the assumption about the symmetry
of r. Consider an object moving in the 2! 22-
plane. If we merely assume that the object is
rigid (with a possibly complicated asymmet-
ric shape), the pattern it inakes on an image
will depend on its velo city vector as well as
on its coordinates. in fact, if »(x!,2?) denotes
the pattern it makes when it is placed a the
origin “lacing” in the direction of the positive



»1-axis, its presence at (2}, 2?)attimet, with
velocity (U:, v), willbe represented by the in-

tensity function

Rz — 2} 2% — 2850

1 1 1 2 2 2 2 1 1 2
N BN Canca O il Y L G 4D
' ( Ve ei? (w2 +(])? ’
since the matrix expressing the rotation of the

positive x'-axis to the positive (v, v?)-axis iS
exactly

‘I’bus, if ¥ is any member of the orthonorrnal
set we have chosen to use to make our obscr-
vations, one can then compute the associated
observation function f(sce equation (4)) in
the form

CHE A

//1/;(131 ) R(e - 2l 2t~ 22} vl )de da?

4 Examples

The first example illustrates the case where
the Poisson and [-Brownian models are ex-
actly equivalent, namely when A = O, u’ == O.
One can verify directly thattihe formulas for
the conditional density in the two cases are
then identical and give the exact density func-
tion. In that case, we are tracking a marker
moving on a fixed course with constant veloc-
ity. For the example, we chose the “observa-
{ions” to be I-dimensional images of a scene
consisting of a marker moving within the inter-
val [0, 128Az] on the rea line. The “marker” is
given by the function r(2)= 1 if |2| < 352/2,
0 otherwise, translated to whatever position
its “center” occupies. Snapshots of the scene
at 25 instants of time At apart were synthe-
sized. The velocity v, was kept constant; for

simplicity, we chose v = - A z/ A t.The
funct ion Y0.0=1+ was chosen to be the scal-
ing functron for the “cubic spline wavelet” of
Y. Meyer (pictured in[SM]), rather than the
wavelet itsalf. It is continuously differentiable,
and equa to acubic polynomia on everyinter-
val [nAar, (n+1)A2]. Its translates do form an
orthonorinal family, as required. We used the
128 observations Z*-°, (1<i< 128), obtained
using the functions ¥(z—iAz). The size and
resolution of the images wc synthesize and the
scale of 1 he motion justify this choice of the
function ¢ and the corresponding finite set of
observations. The individual scenes were syn-
thesized by starting the marker a o= 96A.7,
and moving it at speed v fromthere on, adding
“noise” t hat is piecewise constant on every in-
terval [nA x,(n-t 1) A z], with peak values
chosen independently from a O-mean normal
distribut ion. The ¢ in the equation for the
observation process then turns out to be the
root-nlean-square hcight of these peaks. Fi-
nally, weassumed that the initial density is
uniform over the interval [0, 128A2].

Figure 1shows one su ch set of “snapshots”
(time in creases upward), with ¢ = .1. Fig-
ure 2 shows another one, with o = 1. The
(normalized, discrete version of the) density
function prar(2), and the optimal filter Tk =

2prar (2)dr can be computed using the for-

mula for the solution of the Zakai equ at ion.
The values of &xa are shownto theright of the
corresponding “snapshot” in Figures 1 and 2.
The accuracy of the result is hardly surprising.
One could have obtained the location of the
marker, apparently more simply, by “stack-
ing’’the appropriately lateraly shifted signas
on top of one another (i.e. adding the suitably
translat ed signals) to increase the “signal-to-
noise”1 atio and thus extract the position of
the marker out of the noise. In effect, that is
exactly what our algorithm does in this case,
only better so in the sense that it is optimal




(in particular,it draws the appropriate con-
clusions a the earliest opportunity)

The “shift-and-sum” approach is not appli-
cable in the case of a “mancuvering” ohject,
however. The second example illustrates the
formulas we derived in the previous section in
this case. in this example, we used the Pois-
son motion model with1/) = 5Atto generate
a path for the marker, with a two-point den-
sity function for the velocity, namely g(d A
x/At)= 1 /2. I'bus, the marker maintains the
same speed through its direction changes. }ig-
ure 3a shows the snapshots synthesized with
o =1/2,withthe actual location of thecenter
of themarkerto the right of the correspond-
ing image. Figure 3b shows the graphs of the
corresponding normalized densities piar. The
figure to theright of each graph is its expected
value, i.e. the value of Zp.Note that, in
this case, the evolution of the position of the
marker can be visualy estimated by a cunning
observer:indeed, by tilting the page in such a
way that the grazing angle of the rays fromthe
page to the eye of the astute observer is very
shallow, she (or he) can guess fairly accurately
the position of the marker on every frame. The
general form of the algorithm of the previous
scction allows one in effect to generalize this
“tilting’’approach to the 2-dimensional case
(whereit cannot be carried out visually), again
m an optimal way. Perhaps more remarkably,
the agorithm tracks a marker even when the
‘[tilting” approach in the I-dimensional case
eludes the most astute observer. Tigure 4a
shows snapshots synthesized as in Figure 3u
but with o= 1. An honest observer would find
it diflicult to spot the position of the marker
visually with any precision (of course, a more
accurate assessment would have to take into
account the recognition differential of the typ-
ical human observer). Figure 45 shows the
graphs of the densities pin. Their accuracy
in finding the marker (albeit after an initial
time of uncertainty of duration ~74t) is very
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encouraging.

Let us now look at an example of the two-
dimensional situation. In this instance, the
filter was designed assuming a Poisson motion
model to find the simulated track of a small
disk mov ing over the water on a Synthetic
Aperture Radar image of the Pacific ocean off
Mission 13each.The disk was “synthetically”
added to the original image. The SAR reso-
lution was about 10 meters, and we assumed
the object was a disk with a 5-meter diame-
ter. A piccewise linear track was generated us-
ing arandom number generator to choose the
straight- course durations, assuming that the
new velo city at every course change is chosen
from a set of 23 possibilities, with probability
as described in Figure 5. One can immediately
anticipate that the resolution of the SAR im-
ages compared to the size and motion param-
eters of the object should create a substantial
ambiguity in the localization of the object: in-
deed the object may in reality move according
to the mnodel used without having a greatly
perceivable effect on the pixel intensities. Nev-
ertheless, one can till ask within which pixel
the obje ct is at any point in time. To answer
that question using our method, the motion
model chosen to design the filter wag dightly
different from the one which generated the ac-
tual track: vie used the filter derived for the
Poisson model, assuming that the marker was
likely to change course on average once every
time st¢ p, with its ncw velocity one of the nine
possibilities associated to each of the nine pix-
els adjacent to the one it “occupies’. That is
appropi iate whenthe conditional density isin
the first place approximated by an admittedly
inexact but adequate matrix whose entries are
meant 10 represent the nearly constant value
of the density over each pixel. The result is a
quite a-curate localization algorithm (see figs.
6 and %).Yor the first test, the additive white
gaussian noise was generated so that its vari-
ance would be that of thesample variance of



the origina pixel intensities over the left half
of the picture (roughly, the ocean part of the
scene). The intensity of the marker (per unit
area) was chosen to equal that of the bright-
est spot, on that left portion. Due to the small
area of the disk, this trandates to asignal-to-
noise ratio of 11 .7dB at best (when the marker
fals entirely withinapixel), but it could be as
low as —.25dB (if the marker overlays four ad-
Jacent pixels). The track origin was chosen so
that this least advantageous case occurs at the
first frame. T'heintial density was assumed
uniform over the upper left quadrant of the
image. Figure G snows the successively syn-
thesized noisy images, together with a gray-
intensity plot of the updated conditional den-
sity function. The second test. was performed
withthe intensity of the marker reduced to
achieve a signal-to-noise ratio hetween 7dB (in
the best case) and -5dB (in the worst case,
which, again, occured on the first frame). The
plots of the density function in that case (fig.
7) show that in spite of some initial uncer-
tainty, the localization is quite good after nine
frames. These results confirm that one can lo-
calize the position of the object, at least to
within the resolution of the original images,
in the presence of substantial noise and given
that the object cross-section makes it quite un-
detectable on any single image.

These examples also show that the algo-
rithm is not very scnsitive to changes in the
form or intensity of the object. Indeed, we
specifically chosc an object size smaller than
the dimensions of a pixel, and allowed the ob-
ject to move in such a way that its intensity
would contribute to one, two or even four ad-
jacent pixels, thus making the SNR fluctuate
by as much as 12dB. This robustness is en-
couraging. The computation efliciency of the
algorithm is less impressive. The last example
was implemented on a SUN Spare 2 worksta-
tion, and required several minutes of process-
ing time. It is therefore clear that the method

inits present formn is interesting only in those
cases where the SNR is so low that the ob-
ject is not detectable on a single image, i.e.
in those cases where tracking is necessary n
orderto detect and localize.
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Appendix A

Here isasimplified summary of those results of
R.Mortensen, T'. Duncan and Zakai which we
will need (for a complete account, see [MZ],
[RM],[TD], or [1,5]). Assume that X;isa
stochastic process in R™ satisfying the stochas-
tic equation

dXy = h(Xy)dt + g(X:)dB, (Al

where h : R® — R" and ¢ : R* — {n X
mmatrices} are twit.c-diflerentiahle functions,
and B;is Brownian motion in R’”, Assume we
dispose of observations Y; (a stochastic process
in R¥) which obey

dY; = f(xy)dt + odb, (A2)

where ¢ is a real constant, j : R” — R*is
a differentiable function, and b, is Brownian

1

motion in R*. Assume further that B,,b,, and
rgare independent for al ¢ different from ¢’
Given an initiad density g for the states of Xo,
the conditional density p(¢,z given Y, for s <
{)for X;, given al Y, up to time ¢, must satisfy
the (Zakai) equation

TS U BV
En ])[)-;;5)11)[)-* ;5 (}t]) )t>/),
where p and p are related by p(t,2) =

a(t)e¥J()/9% 54 2) in which the function o
takes that value making  p(t, 2)de =1 for

all {, and where the operator D is given by

s - i
D=5 2 g, (497 ) = i
1)
R
(div A)p -- 5;3If|‘p,

(here g7 denotes the transpose of the matrix g,
and div h denotes the divergence of h), the "
component of the vector operator /) is given
by
([) f))l =7 [fla [)]f)y

(where theterm on the right refers to the com-
mutator of the two operators “nmlt.iplicat);on
by f,"and D), and the matrix operator /) is
given by

(D7) = 3l P

Once p  has been computed hy solving
the Zakai equation with initial condition
ple=o=po, the required conditional expecta-
tion F{r.}y,, O <7<t} can be computed
by perforining the integral F{z¢|y,, O <7<

t} /J‘/'(f,J‘)dJ?.(NOtCt}lat if f,gand & are

linear.i.e when the filtering problem is linear,
Kalman snowed that the conditional expecta-
noncant henbe caculated directly by solving
acoupledsystem consisting of a linear equa-
tion in n variables driven by the observations,



coupled to aRiccati equation in n(n+ 1)/2
variables involving the second moment only.
That is infinitely more manageable than hav-
ing tofindthe function p of n + 1 variables
solving theZakai partial differential equation).

Figure Captions
Figure 1

‘1'wenty-five |-dimensional consecutive “snap-
shots” , with time increasing upward, 7The
noise was synthesized to get o = .1; the fig-
ures on the right are the values of the optimal
filter &; in this case, they equal the (horizon-
tal) coordinate of the position center of the
marker exactly.

Figure 2

Same asin Figure 1, except that the noise here
was synthesized to get ¢ = 1; note that the
filter output remains within 3%Az of the ex-
act position as of timet= 7At in spite of
the fact that Zo was assumed uniformly dis-
tributed over the interval [0,128Aat].

Figure 3a

Snapshots of a marker moving in noise gener-
ted to obtain ¢ =.5; the exact positions of
the center of themarker were.gencratcd using
the Poisson model with a rate of .2/At, and
are given by the figures to the right fo each
“snhapshots”.

Figure 3b

The graphs of pin calculated from the observa-
tions made from Figure 3a, with j increasing
from Al to 25A1 from top to bottom. The fig-
ures on the right are the values of the optimal
filter & = [2pn(2)de.
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Figure 4a

Same as Figure 3a, except that the noise here
gives 0 = 1.

Figure 4b

Same as Figure 3b, using the observations
made from Figure 4a

Figure 5a

Table showing the probability density function
of thenew velocity V' at each course change,
where V = |V(cos 0,siu6);|V | is in units of
At/At, where Az is the width of a pixel, and
O in degrees. The difference between the sum
of al the entries and 1 is the probability that
V=0

Figure 5b

Sample track used in simulations. The average
rate of velocity change was chosen to be .4/At.

Figurc 5c¢

Synthesirzed noisy image of that 128 x128-pixel
portion of the originalimage which wc used in
the simulations.

Figure 6

Consecutive SAR images with noise and evolv-
ing marker, and the corresponding intensity
plots of the updated conditional density func-
tion desc ribing the position of the marker. The
dark spot in the upper left portion of the first
intensity plot is at the correct marker position
at the initiad time. The mtensity of the marker
was chosen to achieve a “signal-to-noise” ra-
tion between —.25dB and 11.7dB (depending
on whether the marker ison a pixel or between
pixels).

Figure 7



Intensity plots of the updated conditional den-
sity function describing the position of the
marker, corresponding; to consecutive SAR -
ages withnoise and cvolving marker, as in Fig-
ure 6, except that the “signs]-to-noise” ratio
is between —5d B and 7dB.
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Flguec £

Consecutive SAR images with noise and evolving marker, and the corresponding inten-

sity plots of the updated conditional density function describing the position of the

marker. The dark spot in the upper left portion of the first intensity plot is at the correct

marker position at the initial time. The intensity of the marker was chosen to achieve a

"signal-to-noise" ratio between -.25dB and 11.7dB (depending on whether the marker is
on a pixel or between pixels).
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Table showing the probability density function of the new velocity Vat each course change, where
V= |V|(cos,sin®);| V]is in units of Ax/Ar, where Ax is the width of a pixel, and 0 in degrees.
The difference between the sum of all the entries and 1 is the probability that V = O.

Sample track used in the smulations. The average Synthesized noisy | . .
: sy image of that 128x128-pixel portion of
rate of velocity change was chosen to be .4/At, the: original image which we used in the simulations.
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